The Largest Degrees of Irreducible Characters of the Symmetric Group

By John McKay

Abstract

The largest irreducible degrees and the partitions associated with them are tabulated for the symmetric group Σ_{n} for n up to 75. Analytic upper and lower bounds are derived for the largest degree.

Introduction. A question has been raised by Bivins and others [2]-namely:
For what irreducible representations of the symmetric group Σ_{n} does the degree attain its maximal value and how does this maximum behave for large n ?

This was apparently motivated by the practical considerations of number overflow in the computer but the same question arises in connection with sorting [1].

Each irreducible representation is associated with a partition $a=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$, $a_{1} \geqslant a_{2} \geqslant \cdots \geqslant a_{k}>0$, of n. (We shall use $a \in n$ to mean that a is one of the p_{n} partitions of n.) Its degree is given by [6, p. 61]:

$$
d_{a}=n!\frac{\Pi_{i<j}\left(b_{i}-b_{j}\right)}{\Pi_{i}\left(b_{i}!\right)}
$$

where $b_{i}=a_{i}+k-i$. A combinatorial interpretation of d_{a} is that it is the number of ways the votes for k candidates can be counted one at a time such that the final total number of votes cast is n and at all stages in the counting $n_{1} \geqslant n_{2} \geqslant \cdots \geqslant n_{k}$, where n_{i} is the current number of votes for candidate $i(i=1, \ldots, k)$ with finally $n_{i}=a_{i}$ $(i=1, \ldots, k)$.

Computation of the Maximal Degree. The calculations were made at Edinburgh University on a 4 K 12-bit word length PDP8 computer using a multi-length routine for expansile integer multiplication. The strategy is straightforward. For increasing n, partitions of n are generated in natural order (n first and 1^{n} last) as described in [11]. If a partition, a, precedes or coincides with its conjugate then the degree d_{a} is computed as in the procedure degree of [9] but exponent arithmetic is used retaining integers throughout and avoiding unnecessary overflow. A description of exponent arithmetic appears in [10] but this description is slightly different from that used in this application, and the algorithm given there is a little garbled.

Three arrays are declared, ex, hfac, lfac [2: N], where N is the largest integer occurring as a natural factor (here N is at most 75); ex [n] contains the exponent of n in the result and for all $n \leqslant N, h f a c[n]$ contains the largest prime factor of n and \cdot lfac $[n]$ contains the other factor. After initialization, the expression is evaluated by modifying the exponents in ex. For example, to divide by k !:

$$
\text { for } i:=2 \text { step } 1 \text { until } k \text { do ex }[i]:=e x[i]-1
$$

A 3040

Maximal Irreducible Degrees of the Symmetric Group

				54	86245	62826	89907	32913	48475	90400	51
				360	2717.3	44007	80906	66116	28632	57600	52
				2416	32801	79788	35907	70622	12235	61800	53
		,		16032	08919	82658	76501	24498	76481	40000	54
			1	12332	94008	00148	07351	23185	00477	31500	55
			7	80924	18237	44344	89607	49414	47168	50000	56
			57	59492	68858	65309	68032	60594	83410	40000	57
			392	04228	54325	17105	67342	81079	91024	00000	58
			2843	60991	01639	97708	94957	04013	43897	60000	59
			23219	99844	17184	55788	71179	66465	14524	16000	60
		1	98964	36084	33813	49744	27586	95268	29039	61600	61
		14	84932	70650	29909	32159	91941	84305	99280	64000	62
		112	80848	15471	49092	37752	38783	18899	58910	11200	63
		822	90818	64439	40221	23814	78702	63130	68681	13280	64
		6474	45118	59060	42071	22906	42354	58681	10615	19360	65
		49264	88872	06925	77842	72444	27860	67020	29690	57200	66
	4	02557	12513	54748	85330	10840	14788	82368	98346	54000	67
	30	47316	79121	25109	10697	47261	28840	64586	73715	20000	68
	234	41791	16438	06987	94867	83935	00955	83550	21660	16000	69
	1788	61125	56865	99443	44127	54238	97069	70842	13760	00000	70
	14061	79814	66342	15100	92845	75298	46541	20312	24000	00000	71
1	30752	27432	79523	21538	98976	09524	06388	52853	50440	96000	72
10	99941	83391	42975	66548	10097	63063	04543	75434	51852	80000	73
93	93814	29772	20073	46466	22546	26656	28282	24403	04999	04000	74
755	91730	44948	11890	68765	20714	81759	17862	44539	84930	00000	75

n	$\sqrt{n!}$ a	$={ }_{\text {a }}^{\text {a }}$ b 10^{b}	$m_{n} / \sqrt{n!}$	partition
1	1.00	0	1.000	1
2	1.41	0	0.707	2
3	2.45	0	0.816	2,1
4	4.90	0	0.612	3,1
5	1.10	1	0.548	$3,1{ }^{2}$
6	2.68	1	0.596	3,2,1
7	7.10	1	0.493	4,2,1
8	2.01	2	0.448	4,2,12
9	6.02	2	0.359	4,3,1 ${ }^{2}$
10	1.90	3	0.403	4,3,2,1
11	6.32	3	0.366	5,3,2,1
12	2.19	4	0.352	5,3,2,12
13	7.89	4	0.272	5,4,2,12
14	2.95	5	0.235	6,4,2,12
15	1.14	6	0.256	5,4,3,2,1
16	4.57	6	0.252	6,4,3,2,1
17	1.89	7	0.258	6,4,3,2,12
18	8.00	7	0.204	7,4,3,2,1 ${ }^{2}$
19	3.49	8	0.185	7,5,3,2,12
20	1.56	9	0.160	7,5,3,2 ${ }^{2}, 1$
21	7.15	9	0.157	$7,5,3,2^{2}, 1^{2}$
22	3.35	10	0.163	7,5,4,3,2,1
23	1.61	11	0.178	7,5,4,3,2,1 ${ }^{2}$
24	7.88	11	0.149	8,5,4,3,2,1 ${ }^{2}$
25	3.94	12	0.139	8,6,4,3,2,12

n	$\begin{gathered} \sqrt{n!} \\ a \end{gathered}$	$={ }_{\text {a }} \mathrm{a} \cdot 10^{\mathrm{b}}$	$m_{n} / \sqrt{n!}$	partition
26	2.01	13	0.123	$8,6,4,3,2,1^{3}$
27	1.04	14	0.122	$8,6,4,3,2^{2}, 1^{2}$
28	5.52	14	0.104	$8,6,5,3,2^{2}, 1^{2}$
29	2.97	15	0.099	8,6,5,4,3,2,1
30	1.63	16	0.115	$8,6,5,4,3,2,1^{2}$
31	9.07	16	0.102	9,6,5,4,3,2,1 ${ }^{2}$
32	5.13	17	0.098	9,7,5,4,3,2, 1^{2}
33	2.95	18	0.091	9,7,5,4,3,2,1 ${ }^{3}$
34	1.72	19	0.092	9, 7, 5, 4, 3, 2 ${ }^{2}, 1^{2}$
35	1.02	20	0.077	$9,7,6,4,3,2^{2}, 1^{2}$
36	6.10	20	0.067	$9,7,6,4,3^{2}, 2,1^{2}$
37	3.71	21	0.060	$10,8,6,4,3,2^{2}, 1^{2}$
38	2.29	22	0.070	9,7,6,5,4,3,2,1 ${ }^{2}$
39	1.43	23	0.065	10,7,6,5,4,3,2,1 ${ }^{2}$
40	9.03	23	0.065	$10,8,6,5,4,3,2,1^{2}$
41	5.78	24	0.063	$10,8,6,5,4,3,2,1^{3}$
42	3.75	25	0.066	$10,8,6,5,4,3,2^{2}, 1^{2}$
43	2.46	26	0.057	11, $8,6,5,4,3,2^{2}, 1^{2}$
44	1.63	27	0.051	$11,8,6,5,4,3,2^{2}, 1^{3}$
45	1.09	28	0.046	11,9, $7,5,4,3,2^{2}, 1^{2}$
46	7.42	28	0.042	11,9, 7, 5, 4, 3, $2^{2}, 1^{3}$
47	5.09	29	0.040	$10,8,7,6,5,4,3,2,1^{2}$
48	3.52	30	0.039	11, $, 7,7,5,4,3,2,1^{2}$
49	2.47	31	0.041	11,9, $7,6,5,4,3,2,1^{2}$
50	1.74	32	0.041	11,9,7,6,5,4,3,2,13

When complete, the result is reduced to a product of prime powers by decomposing the factors in decreasing order of magnitude into prime factors. The final numerical result may then be obtained. The computation of the cumulated product is speeded up by storing those prime powers that can be contained in a single-length word (viz. up to $2^{12}-1$). An ALGOL algorithm for the reduction is given by:
comment den is not needed if the result is known to be an integer, otherwise the result is given by num/den;

```
num \(:=\) den \(:=1\);
for \(k:=N\) step -1 until 2 do
    begin if \(e x[k] \neq 0\) then
            begin if lfac \([k]>1\) then
                    begin
                    \(e x[h f a c[k]]:=e x[h f a c[k]]+e x[k]\);
            \(\operatorname{ex}[l f a c[k]]:=\operatorname{ex}[l f a c[k]]+e x[k]\);
            \(e x[k]:=0\); go to \(a\)
            end;
            if \(\operatorname{ex}[k]>0\) then num \(:=n u m \times k \uparrow e x[k]\);
            if \(e x[k]<0\) then den \(:=\operatorname{den} \times k \uparrow e x[k]\)
            end else
```

a : end

The partial product num is stored as a multi-length integer and repeatedly multiplied by single-length integers to obtain the final value for the degree d_{a}. The machine used had no hardware multiplication and the worst case ($2^{12}-1 \times 2^{12}-1$) single-length \times single-length multiplication took approximately $1 / 2$ millisec $=500$ instructions to complete.

The degrees were printed in decimal using Lunnon's [8] multi-length arithmetic package for Atlas.

The tables extend those of Comét [4] (up to $n=30$) and those of Baer and Brock [1] (up to $n=36$). They do not seem to reveal any simple recurrence between the partitions associated with the maximal degree for Σ_{n} and those for $\Sigma_{k}(k<n)$. It is notable, however, that frequently a partition for the maximal degree for Σ_{n} differs from that for the maximal degree for Σ_{n-1} in a single part only.

Bounds for max d_{a}. Upper and lower bounds for $m_{n}=\max _{a \in n} d_{a}$ are easy to find using group-theoretic facts concerning the characters of Σ_{n}. For a lower bound we have [$5, \mathrm{p} .23$] that the mean value of d_{a} is given by s_{n} / p_{n} where s_{n} is the number of solutions to $x^{2}=1, x \in \Sigma_{n}$; viz.,

$$
s_{n}=\sum_{k=0}^{[1 / n]} \frac{n!}{2^{k} k!(n-2 k)!} .
$$

The character column orthogonality relation on the degrees gives $n!=\Sigma_{a \in n} d_{a}^{2}$; hence, $s_{n} / p_{n} \leqslant m_{n} \leqslant(n!)^{1 / 2}$.

Now Chowla, Herstein, and Moore [3] give the asymptotic $s_{n} \sim$ $2^{-1 / 2}(n / e)^{1 / 2 n} e^{n^{1 / 2}-1 / 2}$ and this, together with well-known approximations for p_{n} and $n!$, gives

$$
l_{n}=\frac{4 n \sqrt{3}}{e^{(\pi / 3) \sqrt{6 n}}} \cdot \frac{(n / e)^{1 / 2 n} e^{n} 1 / 2}{2^{1 / 2} e^{1 / 4}} \leqslant m_{n} \leqslant(2 \pi n)^{1 / 4}(n / e)^{1 / 2 n}=u_{n}
$$

from which

$$
\frac{u_{n}}{l_{n}}=\frac{k e^{t n^{1 / 2}}}{n^{3 / 4}}, \quad k=(\pi e / 288)^{1 / 4}, \quad t=\frac{\pi \sqrt{6}}{3}-1
$$

Remark. The referee has brought to my attention the work of Logan and Shepp [7] who have solved a continuous analogue of this problem and find their result not inconsistent with the partition tabulated here for $n=75$.

Added in Proof. It has been conjectured from the tables given here that $m_{n} \leqslant$ $\sqrt{n!} / n$, but Eric Regener has computed that the smallest value of n for which the conjecture is false is $n=81$ which has a maximal partition of $15,12,10,9,7,6,5,4,3^{2}$, $2^{2}, 1^{3}$.

Department of Computer Science
Concordia University
1455 Maisonneuve West
Montreal, Quebec, Canada

1. R. M. BAER \& P. BROCK, "Natural sorting over permutation spaces," Math. Comp., v. 22, 1968, pp. 385-410. MR 37 \#3800.
2. R. L. BIVINS, N. METROPOLIS, P. R. STEIN \& M. B. WELLS, "Characters of the symmetric groups of degree 15 and 16," Math. Comp., v. 8, 1954, pp. 212-216. MR 16, 333.
3. S. CHOWLA, I. N. HERSTEIN \& W. K. MOORE, "On recursions connected with symmetric groups. 1," Canad. J. Math., v. 3, 1951, pp. 328-334. MR 13, 10.
4. S. COMÉT, "Improved methods to calculate the characters of the symmetric group," Math. Comp., v. 14, 1960, pp. 104-117. MR 22 \#10212.
5. W. FEIT, Characters of Finite Groups, Benjamin, New York, 1967. MR 36 \#2715.
6. D. E. KNUTH, The Art of Computer Programming. Vol. 3, Addison-Wesley, Reading, Mass., 1973.
7. B. F. LOGAN \& L. A. SHEPP, "A variational problem for random Young tableaux." (To appear.)
8. W. F. LUNNON, "Multi-length arithmetic for Atlas." (Unpublished.)
9. J. McKAY, "Symmetric group characters-Algorithm 307," Comm. ACM, v. 10, 1967, p. 451 ; ibid., v. 11,1968 , p. 14.
10. J. McKAY, "On the evaluation of multiplicative combinatorial expressions," Comm. ACM, v. 11, 1968, p. 392.
11. J. McKAY, "Partitions in natural order-Algorithm 371," Comm. ACM, v. 13, 1970, p. 52 .
