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The Largest Degrees of Irreducible Characters 
i of the Symmetric Group 
! 

By John McICay 

Abstract. The largest irreducible degrees and the partitions associated with them are 

\ tabulated for the symmetric group En for n up to 75.  Aftdytic upper and lower 
\ bounds are derived for the Imgest degree. 
i 

htduct ion.  A question has been raised by Bivins and others [2] -namely: 

I 
For what irreducibIe representations of the symmetric group En does the degree 

' attain its maximal value and how does this maximum behave for large n? 
1 This was apparentIy motivated by the practical considerations of number overflow 

in the computer but the same question arises in connection with sorting [I]. 

I Each irreducible representation is associated with a partition a = (al,  a2 ,  . . . , ak), 
1 a l k n 2 > . - - Z a k > O , o f n .  ~ e s h d u s e ~ E n t o m e a n t h a t a i s e n e o f t h e p ~  
I partitions of n.) Its degree is given by [6, p. 611 : 

ways the 

number c 
- - 

votes for 
tf votes c; 

where b, = a; + k - i A combinatorial interpretation of da is that it is the number of 
k candidates can be counted one at a time such that the final total 

1st is n and at all stages in the counting n, 2 a, 3 . . 3 n,, where 

ni 1s the current number of votes for candidate i (i = 1, . . . , k) with finally ni = ai 

( i = I ,  ..., k). 

a partitio 
as in the 
~ 1 .  . -. . - *. . . 

appears h 

tion, and 

Computation of the Maximal Degre. The calculations were made at Edinburgh , - 
University on a 4K 12-bit word Iength PDP8 computer using a multi-length routine for 
expansile integer multiplication. The strategy is straightforward. For increasing n, par- 
titions of n are generated in natural order (n first and I n  last) as described in [I I]. If 

n, a, precedes or coincides with its conjugate then the degree d, is computed 
procedure degree of [9] but exponent arithmetic is used retaining integers 

uuougnaut and avoiding unnecessary overflow. A description of exponent arithmetic 
I [lo] but this description is slightly different from that used in this applica- 
the algorithm given there is a little garbled. 

Three arrays are declared, ex, h fac, l fac 12: NJ , where N is the largest integer 
occurring as a natural factor &ere N is at most 75); ex [n] contains the exponent of n 
in the resuIt and for all n < N, h fac[n] contains the largest prime factor of n and 
'lfuc[~a] contains the other factor. After initialization, the expression is evaluated by 
modifying the exponents in ex. For example, to  divide by k! : 

for i F 2 step 1 untiI k do ex [i] = ex [i] - 1 ; 
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C 

= a.10~ rn /= partition 
n 

b 

1 . ~ ~ 3  33 0.044 11,9,3,6,5,4,3,22,12 

8.98 33 0.040 12,9,7,6,5,4,3,2~,1~ 

34 0.037 ~2,9,7,6,5,4.3,2~,1~ 
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When compIete, the result is reduced to a product of prime powers by decomposing the 
factors in decreasing order of magnitude into prime factors. The final numerical result 

1 
I may then be obtained. The computation of the cumulated product is speeded up by 

storing those prime powers that can be contained in a sinde-length word (viz. up to 

i 212 - 1). An ALGOL algorithm for the reduction is given by: 

I comment den is not needed if the result is h o r n  to be an integer, otherwise t h e  result 
t 
! is given by nurnlderz; 

rmm := den := 1; 
for k = N step -1 until 2 do 

begin if ex [kj # 0 then 
kgjn if lfac [it] > 1 then 

begin 
ex [h fac [k] ] := ex [hfac [k]  ] =+ ex [k]  ; 

exflfac [k]] := ex [Ifac {k]] + ex [ k ] ;  

ex [k] := 0; go to a 

end; 
if ex [k] > 0 then num P num x k t ex [k] ; 
if ex [k] < 0 then den := den x k t ex [k] 
end else 

a: end 

The partial product num i s  stored as a multi-length integer and repeatedly multiplied 
by single-length integers to obtain the final value for the degree d,. The machme used 

had no hardware multiplication and the worst case (212 - 1 x 212 - I )  single-length 
x single-length multiplication took approximately % rnillisec = 500 instructions to 
complete. 

The degrees were printed in decimal using Lunnon's [&I multi-length arithmetic 
package for Atlas. 

The tables extend those of Corne't E41 (up to n = 30) and those of Baer and 
Brock [I] (up to n = 36). T h y  do not seem to reveal any simple recurrence between 

the partitions associated with the maximal degree for Z, and those for Z, (k < n). It 
is notable, however, that frequently a partition for the maximal degree far Z, differs 
from that for the maximal degree for En-, in a single part only. 

Bounds for max d,.  Upper and lower bounds for m, = rnax,,, d, are easy to 
find using grouptheoretic facts concerning the characters of Z,. For a lower bound we 
have [5, p. 231 that the mean value of d, is @en by sn/p, where sn is the number of 
solutions to x2 = 1, x f Z,; viz., 

The character column orthogonality relation on the degrees gives n! = EnEn d z ;  hence, 
s,/pn < mn < (n!)y2. 
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Now Chowla, and Moore 131 give the asymptotic s, - 
2-'(n/eIbn~'-" ma rrus, together with well-known approximations for& and n!, 
gves 

73 who h: 
:consisten 

WK. lne 
ave solvet 
t with th( 

rereree nas brought to  my attention the work of Logan and Shepp 
:uous analogue of this problem and find theit result not 
1 tabuIated here for n = 75. 

~ f .  It has 
ener has I 

- Q l  ".I.<, 

Added in Proc been conjectured from the tables given here that m, < 
dzjn, but Eric Reg mmputed that the smallest value of a for whch the con- 

i jecture is false is n - ,, ,,,sh has a maximal partition of 15, 12, 10,9,7, 6, 5,4, 3', 
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